OSTRACODA (CRUSTACEA: PODOCOPIDA) FROM SOUTHERN AUSTRALIAN SALT LAKES, WITII THE DESCRIP'TION OF RETICYPRIS NEW GENUS

by K. G. McKenzie*

Abstract

Summary McKíngap, K. G. (1978) Onnicesta (Crustacea: Poducopida) from sonthern Australian silt lakes, with the description of Reticypris new genus. Trrms. R, Sioc. S. Aust, 102(7), 175-190, 30 November: 1978. Ostracoda are identified from collections made in South Austritlith and Western Australith sall lakes. The new genus, Reticypris, new species (Typrimoras edwardi, Dincypris patacompmeta, D. occidentasin, Ratleypris Merdssi, R. dedeckheri, Cyprideis westraliensis, "Aficrocylherura diflicilis, C wheromm sudauspralis and new subspecies Myilorypris fasmanica chapmumi are described.

Introduction

The conlinental Ostracoda of Australia are gradually becoming better known, thanks to the impetus given to taxonomic studies by timnologists. For an arid continent the study of satine lake environments has obvious relevance and, since Ostracoda are one of the commoner groups in such environments, it is iegrettable that little relevant taxonomic work has heen undertaken. The opportunity to improve this situation ciame with an invitation from W, D. Williams to study the ostracodes in saline lake collcctoons made by him in southern South Austritis and Western Australia in 1971 and 1972. The chenical composition of these environments and detaled locality maps are provided in Williams \& Buckncy (1976).

Previously, the large endemic species have been studied by De Deckker (1974. 1975. 1976) and McKenaic (1966). and Vituable work was done by Herbst (1957, 1958) on the endemic genera Platyoypris and Diacypris. In addition to species deseribed by these workers, a new genus, eight new species and a now subspecies were identified in the course of the present study.

Materials and methods

Soft parts have been drawn using a Wild M. 20 camera lucida. External carapace mor-
phology was photographed by scanning clectron microscopy but internal features have been drawn.

The German taxonomic terms Zahnborsten and Strahlen are used commonly in the general ostracode literature, Zahnborsten are spinc-like bristles on the maxillule third lobe which are often barbed. Strahlen are pilose setac on the respiratory epipods of the mandible, maxillulue and maxilla (P I). The terms P I, PII, PIII refer to paired thoracic limbs on the rear of the body. The a, β, and γ sensory bristles on the mandible endopod were detined and illustrated in McKenzic (1977a).

The conventions: L-- length, $H=$ height: $B=$ breadth; $R V=$ right valve: $L V=$ left valve: have been used throughout. The term "population" means at least " dozen indivi. duals of a species, ineluding adult males and fumales and juvenilcs.

Types are stored at the Australian Museum, Sydney and the remainder of the material has heen returned to W. D. Williams, University of Adelaide. Copies of appendices which give locality details (Appendix I), ostricode determinations and numbers of specimens by locality (Appendix II), and associated fauna (Appendix III) may be oblained from the author.

[^0]
Sysiematic descriptions

Supcrfamily: CY'SHERACEA Buird, 1850
Family: CYTHERIDEIDAE Sars, 1925 Subfamily: CYTHERIDEINAE Sars, 1925 Genus: CYPRIDEIS Jones. 1857

Cyprideis westraliensks sp, nov FIGS 1-3, 21-28

Holotype: AM P26650, adule male,

Paratypes: AM P26651: 2 adult females. 1 adult male.
Type tovality: Causeway at Lake Presten, W.A. Material: Populations from Lakes Preston and Coolongup, W,A.
Description: Shell whitish, but appearing brawuish because of yellow-brown soft body inside: medium sized; elongate subrectangular in lateral view; inequivalved with LV distinctly larger, and KV possessing kmall posteroventral spine in some individuals: ornamented with Jarge shallow pittings: dorsum straight, slighty inclined posteriorly: anterior more broadly rounded than posterior; venter weakly inflexed anteriomedially; greatest height just in front of central muscle scars, and about half length. In dorsal view subelliptical; tapering anteriorly, rounded posteriorly; displaying sex dimorphism: females broadened posteriorly wheress males are not; greatest breadth medial and under half length in males, but posteromedial and about half length of females. Internally: lamellae moderately broad: narrow anterior and posterior vestibules present; inner margin regnlar; marginal pore canals numerouts, ofien branched; normal pore canals scattered. sleve type; contral muscle scars comprising 4 adductors in subvertical row, a large V-shaped froutal scar, a fulcral scar and at least one large mandioular, some dorsal scars observed ilso, hinge entomodont, consisting in

RV of elongate, distinctly crenulate terminal tooth-like projections, and medialty with crenulate furrow anleriorly which becomes weakly crenulate ridge posteriorly; LV complementary,

Antennule robust, 5 -scemented; segmental |ength ratios 25:22:10:10:11; armature comprising mainly strong claw-like spines, terminal segment aboul $3 \frac{3}{2}$ times as long as wide. Antenna powerful, 4 -segmented; segmental length iatios 35:7:33:5; armature normal; flagellum long, Z-segmented. Mandible coxa powerful; coxal teeth decreasing regularly in size from front to rear: endopod normat; epipod with 5 Strablen. Maxillule palp and Iobes normal; epipod with 17 Sirahlen, including one which points downwards. Thoracic limbs iP 1 to P III) all functioning as walking legs, and displaying asymmetey between right and Ieft limbs, especially in male P II, which is typical for this genus. Brush shaped organs present in male. Furca much reduced. Posterion of female body flattened and produced into a pointed tobe. Cups of natplius eye fused. Hemipenes latge, eomprising an ovate posterion girdle strengthened by numerous muscle bands, and accuminate anterior lappet; this combination typical for genus. Nalural colour of soft hody yellow-brown.
Dimensions: Holotype, adult male- 1 - 0,90 tnm. $\mathrm{H}=0.44 \mathrm{men}, \mathrm{H}-0.44 \mathrm{~mm}$. Paratype. adult female-L $-0,92 \mathrm{~mm}, \mathrm{H}-0.45 \mathrm{~mm}$, B $=0.46 \mathrm{~mm}$.
Discusslon: The genus Cyprideis is well known. not only because it is polyhalme and regularly encountered in a varicty of fresh, brackish and saliue environments, but also hecause its distribution is cosmopolitans, extending to every continent except Antarctica. Long ngo it was bypothesised that this cosmopolitur distribution was effected by birds, and some recent

Figs 1-20. Figs 1-3: C'ypriduls westruliensis sp, nov. holotype. 1: external LV, x 40; 2: external RV, $\times 45$; 3: sieve type normal pore camal, x 1500. Fig, 4, ? Microcytherrera difficilis sp. nov., holotype, external RV. x 120. Fig. S. Limmocythere mowhrayensis, female, extermal RV. x 100. Fig. 5, Mytlocypriy tasmanica chapmani ssp. nov. holotype, internal RV, x 15. Fig. 7. Diacypris occidenfalis sp, nov, paratype AM P26tit, detail muscle scars internal RV, x 375: Figs 8-10: Cyprinolus edwards 3 p. nov, 8, paratype, AM P26664, ioternul RV, A 25; Fig. 9, hototype, male, extermal RV, $\sqrt[2]{ } 25$: Fis. 10 , domed simple normal nore canal of bolotype s 800. Figs 11, 12: Diacypris paracompacta sp nov, paratype, AM P26670. female 11: externat LV, \& 60 1 12 , exremal RV. $\times 60$ Fizs 13-14: Diacypris accidentalis Sp, nov, paratype, AM P2667, fetaiale. 13: internal RV. $\times 65,14$ extermal IV, 855 , Fig. is, Relicypris herbst gen, nov. sp. nov, holotype, male, external LV, s 60. Fig 16. ? Micracytherura difficilis sp. nov, holotype, dorsal view x 110. Fig. 17. Rericypris herhsti sen. nov, sp, nisy, hololypes rimmed simple normat pore canats, x 300. F/as is, $19:$

 fenase, rimuied, simple, normal pore canal \& 450 .

Figs 21-26. Cyprideis westraliensis sp. nov, holotype, male; 21: antenna; 22: distal P 11: 23: distal P 115, 24: P I; 25: antennule; 26; hemipenis. All magnifications $\times 300$.
experimental confirmation has been obtained (Löffer \& Leibetseder 1965), Because Cyprldeis broods its first instar in the shell, the passive transport of both sexes or of impregnated or brooding females is necessary to effect distribution across barriers such as the oceans and great deserts (McKenzie 1973).

Over 30 species of Cyprideis have heen described but, because the earapace morphology can vary intraspecifically and is similar in practically all species, distinctions often rest on differences in the male hemipenis, which follows a pattern characteristic of the genus. However, the hemipemis of Cyprideis westraliensis, in particular the morphology of the internal chitinised process, is not matched in any previously described species.
Devipation of name: From Western Australan.
Family: CYTHEROMATIDAE Elofson, 1939 Subfamily: CYTHEROMATINAE Elolson, 1939
Genus: CYTHEROMA Mäller, 1894

Cytheroma sudaustralis sp. nov.
FIGS 30, 35-42
Folotype: AM P26652, adult male.
Paratypes: AM P26653-26654, 2 qdult lemates, 1 adult male.
Type locality; Coastal pond between Port Clinton and Wakefield, S.A.
Material: Five topotypic adults.
Description: Shell whitish; medium sized; elongate subreniform in lateral view; inequivalved, left valve (LV) stightly latger than right valve (RV) and overlapping it ventrally; shell smooth; dorsum gently convex; anterior rounded; posterior broadly rounded; venter weakly inflexed anteromedially: greatest height just behind adductor muscle scars, and about half length. In dorsal view regularly elliptical; greatest breadth medial and about half length. Internally: lamellae broad; line of concrescence marginal; anterior vestibule large, posterior vestibule large and elongate; inner margin regular; marginat pore canals short and numerous; normal pore canals large, sievetype, numerous; central muscle scars comprising 4 adductors in subvertical series, plus broadly V-shaped frontal scar, fulcral scar, and two mandibular scars; hinge very weakly lophodont, RV with lobate anterior antislip projection and low weakly crenulated posterior projection, LV with complementary antislip projection, weakly developed median bar and shallow posterior groove.

Antcnule 6 -segmented; segmental length ratios $7: 7: 2: 1.5: 2.5: 3$; armature consisting mainly of strong claw-like spines; terminal segment about 5 times as long as wide. Antenna broad and short; segmental length ratios 9:11:4; armature normal; flagellum 2-segmented; antennal gland lobate. Mandible coxa pormul, second tooth from anterior slightly more prominent than others which otherwise diminish in strength regularly from front to rear; endopod normal; epipod with 2 very long Strablen and 1 or 2 shorter Strahlen. Maxillule palp and lobes normal; epipod with a single aberran Strahl and 14 feathered Strahlen, Thoracic hmbs normal, increasing in size from P 1 to P IIT as illustrated. Posterior of body hirsute in holb sexes. Cups of the nauplius cye fused.

Carapace sex dimorphism very weak, females slightly larger and broader than males, Hemipenes large, about 40% of body length, pointed anteriorly and similar to those illus-
trated for other eytheromatids, being characlerised by prominent penifera.
Dimensions: Holotype, adult male- $\mathrm{L}=0.53$ $\mathrm{mm}: \mathrm{H}=0.26 \mathrm{~mm} ; \mathrm{B}=0.27 \mathrm{~mm}$. Paratype, adoll remale- $\mathrm{L}=0.56 \mathrm{~mm}: \mathrm{H}=0.28 \mathrm{~mm}$: $B=0.29 \mathrm{~mm}$.
Discussion: Cyyheroma has been described rarely in the literature. Hartmann (1964) notes five species, of wheth C similip Skogsterg. 1959 is probably a Paracypheroma, and Schornikov (1969) has described a axth. Further, Species DG Maddocks, 1966 may be a Cytheroma. These other species all differ in shape from the rew species,

The distributions of other genera it the family form an interesting biogeographic pattern. Paracytheroma Juday, 1907 and Megecy/here Puri, 1960 (which some authors have synonymised) occur in the Caribbean and on toth coasts of the Americas as tar south as Valdivia, Chile (Hartmann 1962). Pontocylheroma Marinov, 1960 is restricted to the Black and Aroy Seas (Schormikoy 1969). The other Cytherouta species oecur in the North Atlantic, Mediterrancon and Red Sea, possibly even to Madugascar (Maddocks 1966). There are no fecords of these genera from the southern coasts of Africa (Hartmann 1974),

Gytheromia sudaustralis therefore may be considered as a palimpsest of an earlier Tethyan distribution pattern, once continuous for marry groups. from the Gulf of Mexico to Australasia (Ekman 1953, McKenzic 1967b). Derivatort of name: From South Australia.

Family: CYTHERURIDAE Müller, 1894 Subfamily: CY'THERURIDAE Mïller, 1894 Genus: MICROCYTHERURA Müler, 1894
? Microcy/herura difficilis sp. nov.
FIGS 4, 16, 34, 43-51
Holotype: AM P2665s, adult male
Parulypes: AM P26656-26657. popalation of males, females and juveniles
Type Incality. The Coorong, opposite Mount Mills, S.A.
Material: A topotypic population.
Deseriptom: Shell whitish: small: subrectangulat in tateral view; equivalved; weakly reliculate aver entire surfaec relieulations forming concentric pattern anteriarly and ventrally: dorsum straight; anterior raunded, rrending anteroventrally; posterior rounded: venter weakly inflexed anteromedially; greatest height slightify in front of muscle scurs and
about helf length. Io dorsal view, elliptical; narrowing anteriorly, but more rounded posteriorly; greatest breadth medial, and just over half length. Internally: lamellac moderately broad: anterior vestibule and small posterior vestibule present marginal pore canals number ahout 10 anteriorly and 5 ventrally, all short and straight; normal pore canals seattered, sieve type; central muscle scar pattern consisting of subvertical row of 4 adductors, a V-shaped frontal scar and 2 mandibulars; hinge merodont, comprising terminal crenulate teeth in RV with intervening furrow and terminal crenulate sockets in LV with an intervening ridge. Shell sex dimorphism not marked, hut Pemales tend to be shorter and relatively broader than mates.

Anteanule 6 -segriented; segmental lengib ratios 14:17:5:5:6:8; termioal segment about 4 times as long as wide, armature less poweriul than in Cypridels and Cytheroma. Antenna 4-segmented; segmental length ratios 13:5: 26:3; flagellum extending to about tip of terminal claw and bent distally: terminal claw short and stout. Forelip denticulate distally, Mandible coxa with anterior tooth projecting distinctly forwards of others (typieal for this genus); codopod normal, segments relatively wide, Maxillule partially destroyed during dissection, comprising an epipod with ubout 10 Strablen and a normal palp and lobes; length ratio of 2 palp segments 13:4. Walking legs ($\mathrm{P} \mid$ to P III) increasing in length from P I to P III. Hemipenis (Fig, 51) comprising a large posterior part and small pointed anterior lappet.
Dimensions: Holotype, adult roale- $\mathrm{L}-0.37$ $\mathrm{mm}: \mathrm{H}=0.21 \mathrm{~mm}: \mathrm{B}=0.20 \mathrm{~mm}$, Paratype, adult feruale- $\mathrm{L}=0.35 \mathrm{mms}: \mathrm{H}=0.20 \mathrm{~mm}$: $B=0.20 \mathrm{~mm}$.
Dischssion. This species proved to be a taxonomic problem, being like Micracythernra in carapace characters except that the posterior cauda, which is weakly expressed in the European species of the gerus, appears to be absent or almost whsent in this species. But the Australasian genus Laxocythere Homibrook, 1952 is also similar in carapace characlers. As Tar as the sofi parts are concerned, this species has the prolonged anterior tooth on the mandible coxa whicb characterises Mierocytherkra, and the typical antennal flagoltum and slender antemole of cythorurines, but the walking legs are less slender than in cytherurimes and the hemipenis only vaguely resembles the Microcyrterura pariern (Sars 1926, deseription of

M. fulva), On balance, the difficulties in making a confident generic placement remain.
This taxon is distinct from two previously described Australian species assigned to the genus (McKenzie 1967a) of which one, M. miebeli, is confirmed in the genus on soft parts as well (McKenzie, unpublished data).

As a generalisation, most of the difficulties in the taxonomy of such ostracodes stem from their small size and the need to dissect a minute body from the small carapace hefore examining it furtber. Often, eritical details are destroyed as a tesult.
Derivation of name: From Latin: difficilis $=$ difficult.

Family: LIMNOCYTHERIDAE Klie, 1938 Sutflamly: LIMNOCYTHERINAE Klie, 1938
Gcuus: LIMNOCYTHERE Brady, 1868
Linnocythere mowbrayensis Chapman, 1914 FIGS 5. 32
limmicythere (sic) mowbrayensis Chapman. 1914
Lomnicythere (sic) siciela Chapman, 1919
Limnicy/bere (sic) percivali Brehm, 1939
Limnicythere (sic) mowhrayensix: Hornibrook. 1955
Locality: Lake Coolongup, W.A.
Family: CYPRTDIDAE Baird, [835
Subfamily: MEGALOCYPRIDINAE Rome, 1965
Tribe: MYTIL.OCYPRIDINI De Deckker, 1975
Genus: MYTILOCYPRIS McKenzie, 1966
Mytilocypris tasmanica McKenzie, 1966
Localities: Scveral in W.A., from Lake Walungup to a lake near Lort River (see Appendix II).
Mytilocypris tasmanica chapmani subsp. nov. FIG. 6
Holorype: AM P26659, adult male.
Paratype: AM P26660, adult female.
Type locality; Lake Coolongup. W.A.

Material: A topotypic population +5 individuals from W.A.
Descriplion: Shell whitish-yellowish; large; acutely subiriangular (myibilform) in lateral view; equivalved; smooth; dorsum straight and inclined lowards rear; anterior broadly sounded; posterior broadly acuminate; venter weakly inflexed anteromedially; greatest height anleromedial and slightly less than half lengit. In dorsal view subelliptical, narrowing at both extremitics; greatest breadth medial and about 2/5 length. Tnternally: lamellae broad anteriorly and posteriorly, fatrow ventrally; line of concrescence submarginal; inner margin regtalar; marginal pore canals numerous and straight; normal pore canals scattered, simple, open: central muscle scars a rosette of 4-6 adductors plus 2 mandibulars and small frontal sear; hinge of usual ridge and groove type.

The soft body is like that of Mytilocypris tasmanica but the male of chapmani differs at least in that it has only sbout 50 rosettes on the Zenkers Organ (about 60 in (asmanica). The hemipenis, however, is not very different. Other well marked differences are in the shell preportions, with chapmani being higher with respect to its length than tasmanica. In addition, these characters have not been reported previously for the genus but are likely to be coostant at the generic level: rake-like organs with 9-10 teeth, one bind; mandible endopod ventral a bristle long and slender, ventral β bristle pilose, shorter and stout, distal γ bristle thick and tapering with spiky hairs distally,
Dimensions: Holotype, adult mate- $\mathrm{L}-2.68$ $\mathrm{mm}, \mathrm{H}=1.25 \mathrm{~mm}, \mathrm{~B}=1.10 \mathrm{~mm}$. Paratype, adult female- $\mathrm{L}=2.88 \mathrm{~mm}, \mathrm{H}=1.45 \mathrm{~mm}$, $\mathrm{B}=1.33 \mathrm{~mm}$.
Discussion: The taxon is described as only a subspecies because although it differs in several catapace and soft part characters, the hemipenis is closely similar to that of the nominate subspecies. It appears to differ sufficiently from other specles in the genus described by Chapmah (1966) and De Deckker (1978) to sustain a new taxon; in particular because the

Figs 27-34. Figs 27, 28: Cyprideis westraliensis m. sp., paratype, AM P26651, female: 27: intermal LV anterior, 28: intertal RV posterior, with posteroventral spine, x 150. Fig. 29. Cyprinotus edwardi sp, nov., paratype. AM P26664, female, mandible endopod, detai) γ bristle, x 6n0 Fig. 30, Cyiheroma sutidustralis sp. nov., holotype, male, internal LV, x 150. Fig. 31 , Diacypris paracompacta sp. nov., paratype, AM P26672, male, internal LV, \& 150 . Fil 32, Limnocpthere mowhraymsis Chapman 1914, AM P26658, female, internal RV. - ISn. Fig. 33, Reticypris herbsi gon, nov. sp. nov.. paratype, AM P26678, femate, internat LV. $\times 150$. Fig, 34,? Mierncydicrura difficilis sp. nov., holotype. male, internal RV. X 150,
valve proportions (length:height) are unlike those in the other species, Sympatry with the nominate subspecies does not occur, trut since Ostracoda are readily transported by birds and other agencies (McKenzie 1973) it cannot be ruled out as a future possibility, in which case the resulting introgressions should make an interesting study.
Derivation of name: For M. A. Chapman who deseribed several large Australian species.

Genus: AUSTRALOCYPRIS De Deckker. 1974

Australocypris hypersalina De Deckker, 1974 Localities: Eleven localitics in S.A. and W.A. (see Appendix II); the commonest species in the collection.

Anstralocypris robusta De Deckker, 1974
Locality: Moderately long, shallow lake 45 kmL N of Kingston, S.A.
Subfamily: PLATYCYPRIDINAE Harimann \& Puri, 1974
Genus: PLATYCYPRIS Herkst, 1957
Platycypris bawerl Herbst. 1957
Localities: Several locatilies in S.A. and W. A. (see Appendix 11).
Subfamily: CYPRINOTINAE Bronstein, 1947
Genus: CYPRINOTUS Brady. 1886
Cyprinotus edwardi sp. nov.
FIGS $8-10,29,52-57$
Holorype AM P26663, adule male.
Paratypes: AM P26664, adult female and three adult males,
Type locality: Wagin Lake, W.A.
Materiai: Nine topotypic adults.
Deseriprion: Sbell yellowish to brownishy large: subtrapezoidal in lateral view: markedly inequivalved, RV overlupping LV by a prominent dorsal hump, LV larger without any dorsal homp but overlapping RV anteriorly and ventrally: shell punctate except in muscle scar region; dorsum straight and incliued posteriorly in LV, hump-like in RV ; anterior rounded, pointing anteroventrally; pesterior more broadly rounded; venter inllexed medially, ventral margin of RV denticulate anteriorly and posterionly: greatesi height just behind muscle scars and $5 / 8$ of length in RV but about half length in LV. In dorsal view somewhat flexuous; hump furning outwards as does anterior margin; narrowly elliptical with greatest breadth medial aud over $1 / 3$ length
(in males) - Internally: Jamellae tather murrow; line of concrescence marginal; inner margin regular; marginal pore canals short and numerous; selvage very prominent in RV but absent in LV; LV with series of shallow ventral indentations to match KV denticulation: normal pore canals scattered, simple, open; central muscle scars of usual eypridid pattern, comprising 4 adductors and 2 mandibulars; binge consisting of RV ridge and LV groove. Carapace sex dimorphism: females, larger and shightly broader than males.

Abternule 7 -segmented; segmental length ratios 64:17:22:13:11:9:9; terminal segment bver twice as long as wide; "natatory" setae thure than twice as long as 5 distal segments combined, Antennal endopod 3 -segmented, Tength ratios of segments $22: 18 ; 1.5$; flagellum reaching almost to middle of first endopod seg. ment: "natatory" setae distal on this segment, reaching to tips of terminal claws. Mandible eoxa normal, epipod with about 6 Strahlen; endopod a and β bristles both slender and pilose, γ brisile thick and tapering, adorned near its end with spiky hairs, Maxillule epipod with 3 downwards directed and 20 other Strahlen; second palp segment sylindrical and narrow; third lobe with 2 toothed Zahnborsten. Maxilla (P 1) epipod with 6 Strahlen; female palps similar with 3 termimal bristles, 2 subequal, third about twice as long; male palps dissimilar and modified as clasping organsWalking leg (P IT) endopod 4 -segmented; segmental length ratios 16:7:8:3: terminal claw about half ugain as long as lest 3 segments combined, Cleaning limb (P III) reflexed, slender, normal. Chifin support with simple distal point; branched proximally, dorsal branch short and sharply curved, ventral branch less curved and relatively long. Furea with 2 claws and 2 bristles; length ratios for hurcal shaft:anterior claw:posterior claw 35: 20:12: length:width of shaft 15:1: bristles subequal, posterior one separated by definite gap from posterior claw. Zenkers Organ (males) with 30-31 whorls. Hemipenis subtriangular with prominent anterior process and distinctly downtarned flap. Cups of mapplins eye fused. Dinensions: Holotype. adult malc-L $=1.59$ $\mathrm{mm} ; \mathrm{H}=1.13 \mathrm{~nm} ; \mathrm{B}=0.63 \mathrm{~mm}$. Paratype, adult remalo $-1=1.90 \mathrm{~mm} ; \mathrm{H}=1.43 \mathrm{~mm}$: $\mathrm{B}=0.85 \mathrm{~mm}$.
Discussion; Cyprinotns is one of the more dislinclive continental ostracode genera. and is easity placed on carapace characters :tone by the RV dorsal hump and ventral marginal den-

Figs 35-50. Figs 35-37: Cytheroma sudausiralis n. sp., holotype, male. 35: hemipenis; 36: posterior of body; 37: labrum. Figs 38-42: Cytheromu sudaustralis n. sp., paratype, AM P26653, female. 38: posterior of body; 39: distal antennule; 40: P I; 41: distal P I1; 42: distal P II1. Figs 43-50: ? Microcyefierura difficilis n. sp., holotype, male. 43: labrum; 44: distal mandible covale; 45: antenna; 46: antenmule; 47: maxiltule palp and lobes (segments only): 48: distal P 1; 49: distal P III; 50; P II. All magnifications x 600 .
ticulations. This species is more flexuous in dorsal view than other known species, including the two species previously described from Western Australia-C. dahli Sars and C. kimberleyensis McKenzic. Recently, C. ed wardi was found in a collection made in December 1976 by W. D. Williams on Kangaroo Island. S.A., so the species has a wide distribution in southern Australian salt lakes.
Derivation of name; For D. H. D. Edward, who has made several excellent large colleclions of Western Australian entomostracans.

Subfamily: DIACYPIDINAE McKenzie

Diagnosis: A subfamily of cypridid Ostracoda characterised by small-medium sub-riangular or subrectangular smooth or reticulate carapaces and either lacking epipods on the PI altogether or having epipods with only 2 Strahlen. Confined to Australia,

Although first noted as distinctive by McKenzie (1977b) the ubove constitutes its formal designation.
Discussion: The endemic Australian genus Diacypris has been regularly relerted to the Eucypridinae Bronstein, 1947 (Danielopol and Mekenzie 1977). But unlike the eucypridine genera, which are relatively large and typically mytiliform in lateral view, Diacypris is smaller and more regularly subtriangular in lateral view; also, whereas all eucypridines have well developed epipods with 6 Strablen on the P 1 . the diacypridine gencra either lack an cpipod. altogether, or have one with 2 Strahlen, McKenzie (1971) suggested that the presence or absence of a P I epipod alone is insufficient to separate genera which otherwise are very similar. In this instance, however, the character is only one of several by means of which cucypridines and diacypridines can be easily distinguished, as indicated above and as will appear from the descriptions below. Originally the group was proposed as a new tribe, bul its status is now raised to subfamily following the rationale of Hartmann \& Puri (1974) in their recent general classification of Ostracoda.

Mckenzie (1977b) noted that diacypridines occupy in Australia the niches filled in South Africa by eypridopsines. This is an justance of habitat convergence, since taxonomically the groups are very distinct.

Genus: DIACYPRIS Herbst, 1961

Diacypris dielzi (Herbst, 1958)
Lacalities: Several in S.A. (see Appendix II). This is the most common Diacypris in the colIsction.

Niacypris fodieus (Herbst, 1958)
Localities: Several localitics in S.A. (see Appendix 11).

Diacypris whitei (Herbst, 1958)
Localities: Several localities in S.A, (see Appendix II)

Diacypris paracompacta sp. nov.
FIGS 11, 12, 31, 58-62
Uolotype: AM P26669, adult mule,
Paratypes: AM P26670-26672, 3 adult females, 1 adull mate.
Type locality: Very large shallow lake 15 km N of Kingston, S.A.
Material: A topotypic population and individuals from a small salt lake about 16 km N of Meningie and two samples from the out-of portion near "Cantara", The Coorong.
Description: Shell whitish: small-medium sized: regularly subtriangular in lateral view; LY farger than RV, and overlapping it dorsally by a low elongate ridge: micropunctate; dorsum strongly convex, more so in LV, anterior broadly rounded; posterior more martowly rounded, trending posteroventrally; venter inflexed medially; greatest height medial, about 2/3 length. In dorsal view subelliplical, narrowing anteriorly, more rounded posteriorly; greatest breadth medial and just under hale length. Internally; lamellac broad; line of concrescence submarginnt; inner margin regular: trarginal pore canals numerous short and straight anteriorly and posterionly, longer ven-

Figs 51-62, Fig, 51/ ? Microcytherbra difficills sp, hov, holotype, mate, hemipenis, x 600. Figs $52-$ 57: Cyprindpes edwardi sp. mav., holotype male, 52 ; anteonule (segmenls only), X 150 , 53: muxillule palp and lobes (segments only) with Zahnborsten, of 150 ; 54 hemipenes.
 sp . nov.s pararype, AM P26670, female, maxilule palo and lohes (scgmenis anly) with Zahriborsten, x 600: Figs 59, 601 Diacypris paracompacta sp, nov, holotype, male. 59: Zerkers Organ. x 600: 60: hurca x biod Fie 61, Dhacypris paracompacta sp. nov, paratypo, AM P26670, femble. E I (vithom setation), nole absence of epipod, x 600 . Fig. G3, Dioctrmis paracompacta sp, nov., paralype, AM P26672, male, hemipenis, $\times 600$.

Irally; normal pore canals scattered, simple, open; muscle scar bield posteromedial, comprising rosette of 4 adductors plus 2 mandibulars: hinge consistmg ol RV ridge and LV groove Sbell sex dumorphism weak, females usually larger and with greater size range than males.

Antennule 7 -segmented; segmental lengith ratios 70:20:20:18:15:8:8: "patatory" setae about four times as long as 5 distal segments combined, Antennal endopod 3 -segmented; length ratios of segments $23: 14: 4$; "natatory" setae extending beyond lerminal claws and originating mediodistally on first endopod segment: flagellum reaching distal end of this segment. Mandible coxa normal; epipod with about 6 Strahlen; endopod normal, a and β ventral bristles slender and pilose, γ bristle thick and lapering, about twice as long as terminal segment. Maxillale epipod with about 20 Strahlen; palp cylindrical, narrow; length ratio of palp segments $20: 9$; third lobe with 2 weakly toothed Zahnborsten; 2 short bristles proximally on first lober. Maxilla (P 1) epipod absent: endopod in female with 3 terminal hristles, one short, sccond about twice as long and third very long; in males, endopods modified as asymmetric elasping palps, right hroader and less Mexuous than left. Walking leg (P II) endopod 3 -segmented (penultimate. segment undivided): segmental length ratios 16:18:3; lermiral slaw about as long as endopod segments combined. Cleaning limb (P III) reflexed, normal. Chitin supports with simple point distally: branched proximatly, with dorsal branch about $2 / 3$ length of ventral branch. Furcil shaft gently curved, with normal complement of claws and bristles: shaft:anterior claw:posterior claw tength ratios 40:30:13; shaft length: width abaut 20:1; bristles subequally long, posterior bristle slightly displaced from posterior claw. Tn males, Zenkers Organ hase 12-13 whorls. Hemipenis with relatively stranght weakly bilobate anterior process; basal process well chutinised and strangly curved. Rake-like organs each with 8 teeth, one bifid Cups of nauplius eye fused.

Dimensions; Holotype, adult male- $\mathrm{L}=0.55$ $\mathrm{mms}: \mathrm{H}=0.40 \mathrm{~mm} ; \mathrm{B}=0.25 \mathrm{~mm}$. Paratype, adult termale- $\mathrm{L}=0.58 \mathrm{~mm} ; \mathrm{H}=0.41 \mathrm{~mm}$: $B=0.28 \mathrm{~mm}$.
Discussion: The posteromedial muscle sear field and the relatively shortened antemale segments are further characters which separate diacypridines from cueypridines, Male characters, such as the number of whorls in the Zenkers Organ and the hemipenis morphologyare also distinet and unlike such peatures in eucypridines.

The new species is very elose to D. compaeto (Herbst, 1958) but in that species there is no dorsal overlap by the L.V of the RV, such as chacacterises paracompacta. This feature also separates I, paracompacta from the following species.
Derivation of name: From the Latin para $=$ similar, and the specjes name compacta.

Diacypris occidentatis sp. nov.
FIGS 7, 13, 14, 20
Holotype: AM P26673, adult male.
Pararypes. AM P26674, 2 adult fentales, 1 adult malc.
Type locality; Lake Dumbleyung, W.A.
Material: Topotypic material and populations from Lake Chidntp, Lake Stubbs, and Newdigate, a shallow sall water lake near Lake Grace, all in W.A.
Description: Sholl grecnish in life: smallmedium sized; regularly subiriangular in lateral view: almose equivalved; smooth; dorsum strongly convex: anterior broadly rounded: posterior more narrowly rounded, trending posteroventeally; venter inflexed medially; greatest height medial and over $2 / 3$ length. In dorsal view subelliptical; narrowing anteriorly and rounded posteriorly: greatest breadth medial and about half Jength. Jnterually: simitar to D. paracompacia. Sex dimotphism weak, females usually larger than mates.

The soft parts are closely similar to those of b. paracompacta except for these differences:

Figs 63-7T. Figs 63-65, Relicypris herhszi n. gen.. n. sp, holotype, male. 63: attenna endonod isegments unly): 64: P 1. right palp; 65 P I, lef̆ palp: Figs 66-69: Reticypris herbsti n. gen., n. 5p., paratype, AM P26678, female. 66: mundible endopod (segments only) with 0 , \vec{F}, and y bristles; 67: P If 68: P IIL, 69: maxillole palp and thicd lobe with Zatmborsten. Figs 70, 71 : Reticypris n. gen, n, so.. holotspe, male 70: chign support; 71 : hemipenix Figs 72-77: Reticypris dedeckkeri π. cen.: π. sp. holotype, male, 72 i detail intenmal sensory seta: 73 : disinl rurca; 74 : right 户口 I 75 : antennule (segments only): 76: hemiDenis: 77: disal P II. All magnifications x 600.

The length ratios fureal shaft: anterior claw: posterior claw is D. occidentalis are $44: 29: 13$, i.c. the shaft is slightty longer than in D. pario compacta- Further, the basal process of the hemipenis in D. occidentalls is thicker than in D, paracompacta, and of similat thickness throughout its Jength, not tapering as in D. paracompacta: also, the anterior process does not extend as far beyond the basal process as in the South Australian species. The Zenkers Organ has $11-12$ whorls.
Dimensions: Holotype, adult male- $\mathrm{L} .=0.56$ $\mathrm{mra} ; \mathrm{H}=0.38 \mathrm{~mm} ; \mathrm{B}=0.25 \mathrm{~mm}$. Paratype, adult female- $\mathrm{L}=0.60 \mathrm{~mm} ; \mathrm{H}=0.43 \mathrm{~mm}$; $\mathrm{B}=0.28 \mathrm{~mm}$.
Discussion: D. occidentalis, like D. compacta (Herbst, 1958) does tot bave the same definite I.V overlap which characterises D. paracompacra. It is a distinctly smaller species than D, compacta which has a length of ahout 0.71 mm and 14 whorls on the Zenkers Organs. Nevertheless, the three species musi be considered a closely allied group since their hemipenes are so alike.
Derivation of name; From the Latin, occidenpalis = western, a reference to the species' Western Australian provenance.

7 Diacypris sp.

Looralities: Two tocalities in W.A. (see Appendix 4) but the taxon is known to necur also in South Australia (De Deckker pers, comm.). Discussion: The shell of this species is characterised by a pronounced overlapping hump in the LV; and by the presence of several strong spines on the carapace, one or two anteriorly and one posteroventrally on each value. It is unlike any previously described Diacypris in shelf characters, and there were ne soft patts in the specimens encountered in this collectionDe Deckeer (pers. comm.) has indicated that the soft anatomy is like Diacypris, of the three specimens availahle. the largest measured 0.70 mm .

Reticypris gen. nov,

Type rpecies: Reticypris herbsti sp. nov.
Diaghoyis: Dtacypridine genus characlerised by smill-medium size; reticulate carapace; maxilla (P I) epipod with 2 Strahlen; rectanyular hemipenis with downturned flap on anterior process; relatively smooth Zahnborsten on third lobe of maxillule. Otherwise, like Diarypris io its soft anatomy.
Discusylon: It is apparent that Reticypris, especially in its reticalate carapace, is very dif-
ferent from Diacypris. However, there are some points of strong resemblance even in the carapace, notably the posteromedial muscle sear field, The differences are probably enough 10 justify a new tribal category for Reticypris. But with only one genus known with certainty for each tribe such a move seems premature. altbough consistent with modern taxonomic practice in which even subfamilies have been named for single ostracode genera.
Derivation of name; From the Latin, rete $=\mathrm{a}$ net and the gencric suffix cypris; for the reticulate carapace. The genus is feminine.

Reticypris herbsti sp. nov.
FIGS 15, 17, 33, 63-71
Holorype: AM P26676, adult male.
Paratypes: AM P26677-P26679, 3 idult females.
Type locality: Very large shatlow lake 15 km N of Kingston, S.A.
Description: Shell whitish-brownish, smallmedium sized subquadrate in lateral view; ineqtivalved, LV larger and overlapping dorsaliy; reticulate and with weak ventral ridge which is more noticeable in RV ; dorsum gently convex, inclined towards sear; anterior broadly rounded; inflexed anterodorsally in RV where LV overlaps it; posterior more narrowly rousded; ventor inflexed medially; greatest height anteromedial (LV) and about $2 / 3$ length. In dorsal view subelliptical; narrowing anteriorly, more rounded posteriorly; greatest breadth medial and about half length. Internalty: lamellae broad; line of concreseence submarginal; inner margin tegular; weak selvage present in LV; marginal pore canals numerous and straight; normal pore canals scattered, simple, open; muscle scar field posteromedial, comprising rosette of 4 adductors plus 2 mandibulars, hinge consisting of गarrow RV ridge with small triangular anterior projsetion (antislip element) and accommodation groove in LY. Shell sex dimorphism not marked, females usually farger than males,

Antennule 7 -segmented: segmental length ratios $93: 25: 23: 22: 13: 15: 12$; "natatōry" setac about 4 times as long as 5 distal segments combined. Antennal endopod 3-segmented; segmental length ratios 22:13:15; flagellum extending beyond distal end of first cndopod segment; "natatory" setae extendinis well beyoud tips of terminal antennal claws and oriEinating rinediodisially on lirst endopod segment, Mandible coxa normal; epipod with 6

Strahlen plus basal seta. Maxillule normal; epipod with about 20 Strablen; length ratio of palp segments $5: 2$; Zahnhorsten of third tobe relatively smooth. Maxilla (P 1) normal; epipod small but distinct, bearing 2 Strahlen: male palps asymmetric as in Diacypris, Walking leg (P It) with the penultimate segment undivided; terminal claw powerful, curved and about. twice as long as penultimate segment. Cleaning limb (P 111) normal; terminal segment. small but distinct. Furcal shaft evenly curved, lengils ratios of shaft:anlerior claw:posterior claw $45: 21: 12$; bristles about equal, posterior one separated from posterior claty by small gap. Chitia support with bluntly pointed distal tip and forked proximally, ventral branch almost twice as long as dorsal branctr. Ia males, Zenkers Organ has $10-11$ whorls; hemipenis is rectangular, anterior process with a downturned flap. Cups of nauplius eye fused, Posterior of body without any prominent lobe. Dimenvions: Holotype, adult male- $\mathrm{L}=0.54$ $\mathrm{mm} ; \mathrm{H}=0.38 \mathrm{~mm} ; \mathrm{B}=0.25 \mathrm{~mm}$, Paratype, adult female-L $=0.58 \mathrm{~mm}: ~ H=0.40 \mathrm{~mm}$; $B=0.28 \mathrm{~mm}$.
Derivation of name, For H. V. Herbst, who described Diacypris.

Reticypris dedeckkeri sp , nov.
FIGS 18, 19, 72-77
Holotype: AM P26680, adult male.
Paratypes: \quad MM P26681-26682, 3 adult femates, 1 adult mate.
Type locality: Small pond south of Yorketown, S.A.

Description: Shell whitish-brownish; medrum sized; subreniform in lateral view; anequivalved, but not as markedly so as R. herbstl; reticulate, without ventral ridge; dorsum gently convex but not so inclined towards rear as in R, herbsti; anterior and posterior about equally broadly rounded in IV, anterior more broadly rounded in RV; venter inflexed medially; greatest height anteromedial and about $3 / 5$ length. In dursal view: with subparallel thanks; more narrowed anteriorly than posteriorly; greatest breadth medial in males, slighty posteromedial in females and about half length. Internally; similar to R, herbsti. Shell sex dimorphism not marked, females usually larger and slightly broader than males.

The soft part morphology is vety similat to that of R_{0}, herbsti, except that the length ratios of furcal shaft:anterior claw: posterior claw are $50: 23: 12$, i.e, the shaft is slightly longer in R. dedeckkerl. In males, the Zenkers Organ has 10 whorls in R, dedecktieri and the hemipenis differences ean be cheeked on the illustrations (figs 71, 76).
Dimensions: Holotype, adult male-L $\because 0.68$ nim; $\mathrm{H}=0.40 \mathrm{~mm} ; \mathrm{B}=0.31 \mathrm{~mm}$, Paratype, adult female- $L=0.68 \mathrm{~mm}: H=0.41 \mathrm{~mm}$; B $=0.34 \mathrm{~mm}$

Diseussion: The two species of Reticypris described above can be readily distinguished on shell characters alone, Of the two, R. dedeckever is much the larger, has a suhreniform. rather than subquadrate, shape in lateral view and no ventral ridge and differs also in dorsal view.

At present R. dedechkent is known only from the type locality,
Derivation of name: Por P. De Deckker, who has recently described two new Australian ostracode genera.

Other species

Several otfer species are present in the material (Appendix 11). But they are listed in open nomenclature and, except in the case of ? Diawypris sp, which is very distinctive, no further details on them are included. Usually, there are not enough specimens to base a descriplion upon. In other eases, the availabie specimens are either juvenile or oecur as fragments only. Ohe specimen in sample S.A. 40, a Diacypris sp, with spinose ventral margins and measuring 0.88 mm , was destroyed during scanning electron micragraphy of the fauna.

Acknowledgments

Prot, W, D, Willams collected the material and kindly provided facilities at Adelaide during the study. Dr C. Bartusek provided helpfal advice on the University of Adelaide's Siemens scanning electron microscope. Mrs A. Perry and Mis C. Kear typed the manuscript. Mrs C. Whitford was responsible for two of the SEM micrographs.

The research was supported in part by A.R.G.C. Grant No. D76/15127.

References

Chapman, M. ^. (1966) On Encypris mysiloldes (trady), and three new species of Encypris Vivri (Cypridae, Ostracoda) from Australia. Hydrohinlogia, 27(3/4), 368-378.
Danielotobl. D. L. \& Mckenzie. K. G. (1977) I'sychredromm gen, ก. (Crustacea, Ostracoda) will redescription of the cypridid genera Prlonncypris and Hyedromus. Zool. Scripta, 6, 301-322.
DE Deckerk, F. (1974) Abstralocyprix, shew ostracod genus from Ausitrilial. Ausf. J. Zool. 22, $91-104$.
De Deckuek, P. (1975) Determination of ath ostracod collection in relation to Austrulocypris (Cyprididae). Aust. J. Illar. Freshwal. Res., 24, 423-424.
De Deckek. P. (1976) Trigonorypris, an new asiracod genus from Qucenslind. Aust. /. Zoal., 26, 145-157.
De Deckrek, P. (1978) Comparalive morphology and review of mytilocyprinid Ostracods (Family Cyprididae). Ausp. J. Zool. Suppl. Ser., 58, 1-62.
ENMAN: S. (1953) "Zoogeography of the Sca". (Sidgwick \& Jackson: London.)
Hartmann, G. (1962) Zur Kenntnis des Eulítorals der chilenisch en Pazifikhuste and der argentinischen Küste Südpatagoniens unter besonderer Berucksichtigung der Polychaeten und Ostracoden. Teil II Ostracoden des Fiulitorak. Kiel. Meeresforsch, 60, 16y-270,
Haktmann, G. (1964) Zur Kenntnis der Ostracoden Jes Roten Meeres. /hid., 20. 35-127.
Hartmann, G. (1974) Zur Kenntnis des Eulitorals der afrikanischen Westküste zwischen Angolaz und Kap der Guiten Hofinung und der afrikanischen Ostküste von Südafrika und Noşambique unter besonderer Berücksichtigung del Polychamen und Ostracoden. Teil IIf Die Ostracoden dies Unterswehungs gehiets. Mitl Humburg Zool. Mus. Insp.. 69. 229-520.
Hartmann, G. \& Puri, H. S. (1974) Sumimary of nenntological and palcontological classificution of Ostracoda. Miid., 70, 7.73.

Herast, H. V. (1957) Neue Cypridae (Crustacea Ostracoda) aus Ausưalien 1. Zool. Anz., 158, 217-225.
Herbst, H. V. (1958) Neuc Cypridae (Crustacea Ostracoda) aus Australien 11. Ibid., 160, 177. 192.

Lamprr, H. \& Leibetseder, J. (1965) Daten zur D:urer des Darmdurchganges bei Vögeln Ihid. 177. 334-340.
Madoocks. R. F. (1966) Distribution patterns of living and subfossil podocopid usiritcodes in the Nosy Bc area, northein Madagascar. Unilw, Kiansas paleomt. Comstibe, 12, 1-72.
MCKlnzae, K. G. (1966) Myfilocypris, a new ostracode genus from Tasmania. Pap. Proc. R. Soc. Taspl., 100, 27-30.

Mckenzie. K. G. (1967a) Recent Ostracoda from Port Phillip Bay, Victoria, Proc. R. Sene. F'ict., $80(1), 61-10$ 万.
Mckrenze, K. G. (1967h) The distribution of Caenozoic marine Ostracoda from the Gulf of Mexicn to Australasia. Syst, Asroc. Puhl. 7. 219-238.

Mckenrar, K. G. (1971) Entomostraca of Alda. bris, witl special reterence to the genus Hetcrocypris (Crustacea, Oxtracoda). Phil. Truns. R. Suc. Lobnd. Ser, 11, 260, 257-297.
Mckrnzie. K. G. (1973) Cenozoic Ostracoda. In A. Hallam (EJ.). "Allas of Palaeobiogeography", 477-487, (Elscvier: Amsterdam.)
Mckenzif, K. G. (1977a) Illustrated generic key to South African continental Ostracoda. Anuls. S. Afr. Mus.a 74(3), 45-103.
Mckenzir, K. G. (1977b) Ostracoda from southern Australian sall lahes. AksH. Soc. Limmol, Newsletter, 15(1), 46-48.
Surs, G. O. (1926) "An Account of the Crustacea of Norway. IX Ostracoda, Parts X'III \& XIV." (Bergen Muscum: Bergen.)
Scitornikoy, E. I. (1969) Ostracoda, III V. A. Bodyanitsky (Ed.). "Keys to the Fauna of the Black and Azov Seas", 163-260) (Science House Press: Kiey) (in Russian).
Williams, W. D. \& Bucentey, R. T. (1976) Chemical composition of some inland surface waters in South, Western and Northern Aus. tralia. Aust. J, mar. Freshtwat. Res., 27. 379. 397.

[^0]: R Riverina College of Advanced Education. Wagga Wagga, N.S.W. 2650.

